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SUMMARY 
A new flux vector splitting scheme has been suggested in this paper. This scheme uses the velocity 
component normal to the volume interface as the characteristic speed and yields the vanishing individual 
mass flux at the stagnation. The numerical dissipation for the mass and momentum equations also vanishes 
with the Mach number approaching zero. One of the diffusive terms of the energy equation does not vanish. 
But the low numerical diffusion for viscous flows may be ensured by using higher-order differencing. The 
scheme is very simple and easy to be implemented. The scheme has been applied to solve the one 
dimensional (1D) and multidimensional Euler equations. The solutions are monotone and the normal shock 
wave profiles are crisp. For a 1D shock tube problem with the shock and the contact discontinuities, the 
present scheme and Roe scheme give very similar results, which are the best compared with those from Van 
Leer scheme and Liou-Steffen’s advection upstream splitting method (AUSM) scheme. For the multidimen- 
sional transonic flows, the sharp monotone normal shock wave profiles with mostly one transition zone are 
obtained. The results are compared with those from Van Leer scheme, AUSM and also with the experiment. 
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INTRODUCTION 

Since the beginning of 1980s’ upwind schemes have become very popular for the sound theoret- 
ical basis of characteristic theory for hyperbolic systems and thus for their capability of capturing 
discontinuities. After the pioneer work of Steger and Warming,’ Flux Vector Splitting (FVS) 
scheme first drew the attention of the researchers developing the computer codes using CFD. 
Roe’s flux difference splitting scheme was used frequently since it can take care of both the steady 
shock and the contact discontinuity. With the appearance of Van Leer’s FVS, the application of 
flux vector splitting scheme with the implicit relaxation algorithms became very attractive for 
their efficiency, simplicity and ability to capture the sharp shock Van Leer’s scheme 
showed better behaviour than the Steger-Warming scheme for its smooth transition of the 
individual split-flux contributions across eigenvalue sign changes, such as at sonic and stagnation 
points6 Very good representations of the inviscid transonic flows can be obtained by using Van 
Leer’s scheme to solve the Euler equations. Unfortunately, the simplicity of the available flux 
vector splitting schemes comes at a price of reduced accuracy for the viscous flows due to the large 
numerical di~sipation.~ The reason is that the individual split mass flux does not vanish with the 
Mach number reaching zero. The High-Order Polynomial Expansions (HOPE) scheme of Liou 
and Steffen’ and the low-diffusion FVS of Van Leer’ aimed at building up the pure FVS schemes 
with vanishing mass diffusion. They did achieve the required split mass flux. But the instability 
and non-monotonicity of the schemes are not acceptable for practical calculations. Efforts have 

027 1-209 1/93/1401 15-30%20.00 
0 1993 by John Wiley & Sons, Ltd. 

Received September 1992 
Revised March 1993 



116 G-C. ZHA AND E. BILGEN 

also been attempted to improve the original Van Leer scheme by using some techniques 
borrowed from flux-difference splitting. First suggested by Hanel and then extended by Van 
Leer,9*10 the 'Van Leer-Hanel' 90' scheme using the net mass flux and the one-side velocity and 
the total enthalpy for the transverse momentum and energy equations obtained accurate 
temperature profile for the supersonic conical viscous flow. However, a pressure glitch is 
accompanied with that ~cheme .~  A successful and promising scheme was suggested by Liou and 
Steffen (L/S) for their Advection Upstream Splitting Method (AUSM)." They introduced an 
advective Mach number by combining the split-Mach number contributions from original Van 
Leer mass splitting. The AUSM scheme is remarkably simple and yields vanishing numerical 
diffusivity at the stagnation. In a variety of 2D Euler and Navier-Stokes calculations presented in 
Reference 11, the scheme was as accurate and convergency as Roe's splitting, which was 
considered as the most accurate by then. AUSM scheme does not need the matrix operation 
required by Roe scheme and only possesses O(n) operations per grid point instead of O(n2)  for 
Roe's scheme, where n is the number of the equations. Furthermore, AUSM scheme performed 
very well for a 2D supersonic flow over a circular blunt body for which Roe scheme gave 
anomalous solutions. It may be because the original Roe's scheme does not satisfy the entropy 
law and may admit the non-physical solutions such as the expansion shock waves.12 

The flux vector splitting scheme suggested in this paper is aimed at obtaining the vanishing 
individual split mass flux with the Mach number reaching zero and keeping the advantages of the 
FVS, such as being able to capture the crisp shock profile, the simplicity and the efficiency. The 
interface flux is divided into two parts according to the eigenvalues, the convective vector and 
pressure vector. The elements of the vectors are even simpler than AUSM scheme. The eigen- 
values of the convective terms, the velocity component normal to the volume interface, are used as 
the characteristic speeds to attain the goal. The form of the formulations is natural and therefore 
the simplest. It works soundly to capture the crisp monotone shock wave. Moreover, the present 
scheme leads to the vanishing numerical dissipation at the stagnation for the mass and mo- 
mentum equations. Even though one of the diffusive terms of the energy equation does not 
vanish, the theoretical analysis indicates that small diffusion may be ensured by using higher- 
order differencing. 

THE PRESENT FLUX VECTOR SPLITTING SCHEME 

First, we would like to take the 1D Euler equations as the example to explain how the scheme is 
constructed. The 1D equations are simple and have the similar nature to that of the multidimen- 
sions. The 1D Euler equations expressed in Cartesian co-ordinates and conservation form are 

U, + Fx = 0, (1) 
where the vectors U and F are given by 

where t is the time, x the distance, p the density, u the velocity, p the pressure and e is the specific 
total energy. The system is closed by an equation of state p = ( p ,  i), where i is the specific internal 
energy (i=e- 1/2 u'). For an ideal gas whose ratio of specific heats is 7, we have 

p = ( y -  1)pi. (3) 
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Let 
aF A=--- au' (4) 

where A is the 3 x 3 Jacobian matrix. It is already well known that the matrix has three real 
eigenvalues, u, u + a, u -a, where a is the sound speed introduced as 

The following equation can be derived by splitting the diagonal eigenvalue matrix to two parts: 

F = A U = Q A Q - l U = Q  (6) 

where C and P represent the convective and pressure terms and are expressed as the following 
vectors: 

Obviously, the eigenvalues of the Jacobian of C and P are (u, u, u) and (0, a, -a), respectively. 
This suggests that the information of the convective terms propagates uniformly in the same 
direction as the velocity vector u goes, and the information of the pressure terms goes with the 
convective terms at the speed u and propagates in all directions at the sound speed a. The present 
scheme is contrived to evaluate the interface flux F i +  1,2 at locations such as (i + 1/2 Ax) according 
to the information travel directions of vector C and P, respectively. 

The following is the details of the present scheme: 

For subsonic flow, lul <a,  the pressure terms are determined by 

Pi+1,2=PL++PR,  where 

The convective terms are 

if a>u>O, C i + l 1 2 = C l + C ; ,  where CL+=CL, Cg=O, 

if -a<u<O, Ci+112=Cl  + C i ,  where C l = O ,  C i = C R ,  

F l  = C t  +PL+, 

FR = C i  + P i ,  

Thus equatibn (8) can be written as the following general and simple form: 

(9) 
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For supersonic flow, it is the same as the standard upwind differencing scheme, i.e. 

Fi+ 112 =FL' + FR,  
if u 2 a ,  F+=FL,  F-=O, 

if u s - a ,  F;=O, F,=FR. (17) 

It can be proven that the eigenvalues of P +  and P -  are non-negative and non-positive for the 
flows with y 2 1. The pressure splitting for momentum equation is taken from L/S AUSM scheme. 
The pressure power term in the energy equation is split using a similar idea. The whole pressure 
splitting is based on the acoustic propagation speeds (u f a) or their weights (A4 + 1) for average. 
This may represent the pressure propagation characteristics. 

It is clear that the split flux is continuous everywhere. It leads to standard upwind scheme in the 
supersonic region. The mass flux is the same as the natural one and therefore also continuously 
differentiable everywhere. As shown in Figure 1, the individual mass flux vanishes with the Mach 
number approaching zero, while those of Van Leer's FVS and Steger-Warming's FVS do not 
vanish. However, the individual split flux for pressure term is not continuously differentiable 
across the sonic point. When first-order differencing is used this will cause a glitch at the sonic 
point similar to that of Steger-Warming scheme. Fortunately, this glitch can be removed 
automatically by using higher-order differencing. Liou and Steffen" reported that this pressure 
splitting could get smoother transition across the sonic point than the continuously differentiable 
one with the higher-order polynomial. This may be true only when higher-order differencing is 
used. The advantage of this pressure splitting is that it can obtain the monotone shock profile 
even when the second-order differencing is used. At the stagnation point, unlike the 
Steger-Warming scheme, the present scheme is continuously differentiable. 

NUMERICAL DIFFUSION OF THE SCHEME 

From equation (14), it is seen that the present flux vector splitting scheme can be exactly written 
as a central differencing plus the diffusive terms. For supersonic flow, the diffusion is the same as 
the standard upwind scheme. The focus here is concentrated in the subsonic region. Let 

D = l u l [ ~ u ] + [ ~ ]  

the diffusive vector, namely Ddif, can be expressed as 

Equation (14) can then be rewritten as 

Fi+ lj2 =3 [FL+FRI - D d i f *  

For the extrapolation schemes with different-order accuracy, the accuracy order of Ddif is also 
different. &if is equivalent to adding the following derivatives into Euler equations. 

For first-order fully upwind extrapolation: 
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Mach Number 

Figure 1. Mass flux of the flux vector splitting schemes 

For second-order fully upwind extrapolation: 

1 a4D 
dif - 4 ax4 

D ----Ax3. 

For third-order upwind-biased extrapolation: 

a4D Ax3. Ddif = -- - 
12 ax4 

From equation (18), it can be seen that almost all the diffusive terms vanish at the stagnation 
except only one term, pa, in the energy equation. The vanishing terms may ensure that their 
diffusion is small. As equations (22) and (23) show, if a higher-order differencing is used, the low 
diffusion may be furthermore ensured by the higher-order derivatives and the higher power of the 
grid spacing. The diffusion generated by pa, 

1 a4pa 1 a4pa 
4 ax4 12 ax4 

Ax3 or 

may also be expected to remain small. 
In many cases, the gradient of pa near the solid wall may be small. Particularly, for some 

practical cases, when the sound speed is only considered as the function of temperature as the 
ideal gas, if the wall is adiabatic and the pressure gradient normal to the wall is zero or small 
enough to be treated as zero, the diffusion of pa will disappear by cancellation, and therefore the 
total diffusion will disappear on the wall no matter which order of differencing is used. 

Further computational experiments will be made in a later study to investigate the effect of the 
numerical diffusion of the present scheme for the viscous flow calculations. 

For the ability of the present scheme to capture shock waves, it is not proven here by analysis 
how sharp the shock wave profile will be. But the computational experiments presented later 
show that the normal shock captured is as crisp as that obtained by using the Roe scheme and is 
at most two transition zones. 
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One obvious advantage of the present scheme is its simplicity. Similar to Van Leer and L/S 
AUSM schemes, it does not need the matrix operations required by Roe scheme. The formula- 
tions are polynomial in M (Mach number) and of degree one, which is the lowest possible degree. 
The implementation of this scheme is even easier than AUSM scheme. Although AUSM scheme 
is already very simple, its interface Mach number containing both left- and right-hand-side 
variables is not so convenient to get the Jacobian matrix when implicit discretization is to be 
implemented. The interface flux of the present scheme is composed of the vectors with the pure 
left-hand-side variables and the pure right-hand-side variables like Van Leer scheme. It is 
straightforward to construct the implicit operator. 

THE ADVECTION UPSTREAM SPLITTING METHOD (AUSM) 

As mentioned in the introduction, the AUSM scheme suggested by Liou and Steffen" is a simple 
scheme with good accuracy. Hence, the results of the present scheme are compared to the results 
calculated by using the AUSM scheme. As the AUSM scheme is relatively new, a brief description 
of it in 1D form is given. 

The flux F given in equation (2) can be written as 

where H is the enthalpy. 
For subsonic flow, the flux at the interface L < 1/2 c R is given as follows: Let 

The Van Leer's splitting is used to evaluate M*, i.e. M* = +i (M & 1)2, where Al,,E means 

A l p  E = ER - EL. (28) 
There are two choices for the pressure splitting. The first one is the third-order polynomial of 

M and is expressed as 
P 
4 

P* =- (M+ 1)2 (2f M). 

The second one is the simplest possible form of the lowest order 

(30) 
P 
2 

P* =- (1 f M). 

Choice 2 can give a monotone shock profile and choice 1 may yield oscillations near the shock. 
The interface flux for supersonic flow is set as usual by taking either the left or right state 
depending on the sign of the Mach number. 
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EXTENSION AND APPLICATION OF THE PRESENT SCHEME TO 
MULTIDIMENSIONAL EULER EQUATIONS 

Governing equations 

The non-dimensional 
co-ordinates is given as 

where 

U =  [ PW F], 
form of the 3D equations in conservation law form and in Cartesian 

au aF aG aH 
at ax ay a Z  

-+-+-+-=0, 

.-[ , H =  [ 1. (32) 
P+ P W Z  

(e + P)W 

The velocities are u, u, w and e is the total energy per unit volume. The pressure pis determined by 
the ideal gas law 

p = (y  - 1) [e - y(u2 + u2 + w2) /2 ] ,  (33) 
where y is the ratio of specific heats, taken as y =  1.4. 

integral form. Let 

Using the Gauss theorem, the integral form of equation (31) is 

To discretize the equations using finite volume method, the equations should be written in the 

R = Fix+ Gi,+ Hi,. (34) 

where Q is the volume bounded by the surface S and n is the outward pointing unit vector normal 
to the surface. n is expressed as 

n=n,i,+n,i,+n,i,. (36) 
The equations are discretized in the physical domain on the arbitrary body-fitted grid. 

Three-dimensional form of the present upwind scheme 

in equation (34). Let Z be the normal component passing through unit interface. Thus, 
The flux crossing an interface of two adjacent cells is the normal component of vector R given 

Z= Rn = Fn,+ Gn, + Hn,, (37) 

= U, = C + P ,  (38) 

where U, is the normal component of the velocity expressed as 

U, = un, + un, + wn,, (39) 
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2 will be evaluated by using the present flux vector splitting scheme. The extension of the scheme 
from 1D to 3D is straightforward. Similar to the 1D case, the eigenvalues of the Jacobian matrix 
of the convective vector are U,. The eigenvalues for the pressure term matrix are still i- a. C and 
P in equation (38) stand again for the convective and pressure terms. Using the eigenvalues of the 
convective term Jacobian matrix as the characteristic speed, the 3D form of this flux vector 
splitting scheme can be expressed as 

z,,,=z,++z,. (40) 

For subsonic flow, I U ,  I c a, the pressure terms are 

The convective terms are 

if a > U , 2 0 ,  Ci+112=CL++CR, where C t = C L ,  C,=O, (42) 

if -a>U,<O, Ci+1,2=CL++CR, where CL+=O, C&=CR, (43) 

F t  =C,'+P;, (44) 

FR =C, + P i .  (45) 

Let 

The general form of the present scheme in 3D is given as 

2 1 1 2  = f (ZL + ~ R ) - $ ( D R - D L ) .  

For supersonic flow 

if U,ra, FL=FL, F;=O, 

if U , I - a ,  F:=O, F;=FR. 
(47) 

(48) 
The Mach number M, is based on the normal component of the velocity, M,=U,/a. The 
diffusion terms corresponding to equations (21H23) are changed now to the following forms. 

For first-order fully upwind extrapolation: 

1 a2D D dif-2 ---An. an2 

For second-order fully upwind extrapolation: 

(49) 
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For third-order upwind-biased extrapolation: 

1 a4D 
12 an4 

Ddif= ---An 

123 

(51) 

BOUNDARY CONDITIONS 

The conditions for slip and adiabatic wall are used on the solid surfaces. The flux on the wall is 
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Figure 2. ID shock tube results calculated by using the present scheme, grid size: 201, temperature and pressure 
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The pressure is first-order extrapolated from the inner points. On the implicit side, 

where aZ,/aU is the Jacobian matrix and incorporated into the matrix equations when the 
implicit algorithms are used. At the inlet and the exit, the number of the variables determined 
from the inner points is based on the characteristic line theory and the variables are first-order 
extrapolated. 
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Figure 3. 1D shock tube results calculated by using the present scheme, grid size: 201, density and velocity 
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RESULTS AND DISCUSSION 

To judge the viability of the present scheme, lD, 2D and 3D Euler equations were solved. 

Case I: Case 1 is a 1D shock tube flow. As a model problem, consider a tube of large extent in 
which a diaphragm separates a perfect gas at rest with different static pressures but at a uniform 
temperature. With the rupture of the diaphragm, an expansion propagates into the high-pressure 
gas, while a shock wave, followed by a contact discontinuity, propagates into the low-pressure 
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Figure 4. 1D shock tube results calculated by using Roe scheme, grid size: 201, temperature and pressure 
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gas. Details of this flow are described in standard texts.16 In the present calculations, the initial 
pressure ratio across the diaphragm is taken as 10 to 1. The initial location of the diaphragm is 
taken at X / L  = 7.0. To compare the present scheme with the others, Roe’s flux difference splitting 
scheme, Van Leer’s flux vector splitting scheme and Liou-Steffen’s AUSM scheme were also used 
to solve the same 1D problem. All the solutions were calculated by using the explicit first-order 
accuracy differencing. Figures 2 and 3 are the solutions of the present scheme with the CFL 
number 0-95. The solutions are monotone. A crisp shock profile is seen, while the contact 
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Figure 5. 1D shock tube results calculated by using Roe scheme, grid Size: 201, density and velocity 
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discontinuity is composed of more grid zones. It is seen that the present scheme also gives good 
agreement with the exact solution for the expansion waves. The solutions of Roe’s scheme are 
shown in Figures 4 and 5. The shock wave and the contact discontinuity profiles show no 
distinguishable difference between the solution of the present scheme and the Roe scheme. In 
comparing the results, the front of the expansion waves calculated by the present scheme is 
sharper than that of Roe’s scheme. It is noted however that the results of the both schemes agree 
well with the exact solution. Figures 6 and 7 show the results of Van Leer scheme when the CFL 
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Figure 6. 1D shock tube results calculated by using Van Leer scheme, grid size: 201, temperature and pressure 
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number is 0.95. The profiles of the shock and the discontinuity are basically the same as those of 
the present scheme and Roe scheme. But there are large spikes at the tail of the expansion waves 
for all the parameters. The computational experiments indicated that the spikes became less when 
the CFL number was decreased. The spikes basically disappeared when the CFL number was 
down to 0.45 at a loss of sharp shock profiles as can be seen in Figures 8 and 9. Figures 10 and 11 
present the results of the AUSM scheme. It was noted that the CFL number for AUSM scheme 
could not be greater than 0.4 for this 1D shock tube problem; otherwise, the iteration became 
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Figure 7. 1D shock tube results calculated by using Van Leer scheme, grid size: 201, density and velocity 
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unstable. The maximum CFL number used in our calculation for the AUSM scheme was 0.35. 
Similarly, with Van Leer scheme when the CFL number was 045  as shown in Figures 8 and 9, 
both the shock and the contact discontinuities were somewhat diffused because the CFL number 
was far from the upper limit of the explicit scheme, CFL = 1. As indicated in Reference 14, this is 
a common phenomenon for most of the differencing schemes. Among these four schemes tested 
for this 1D shock tube problem, only the present scheme and the Roe’s scheme gave the most 
satisfactory results. 
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Figure 8. 1D shock tube results calculated by using Van Leer scheme, grid size: 201, temperature and pressure 
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Case 2 Case 2 is a 2D transonic Inlet-diffuser shown in Figure 12 designed and studied by 
Bogar et ~ 1 . ' ~  It is a 3D diffuser that can also be treated as 2D. It contains a normal shock wave in 
the downstream of its throat. The calculation was implemented first using first-order differencing 
on the streamwise plane as a 2D case. The explicit two-stage methodI5 was used for the present 
scheme and AUSM scheme and the 2D implicit upwind-relaxation method for the Van Leer 
~ c h e m e . ~  Because the implicit operator with the first-order differencing was used for the Van Leer 
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Figure 9. 1D shock tube results calculated by using Van Leer scheme, grid size: 201, density and velocity 
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scheme, the calculation only converged for the RHS with first- and third-order accuracy 
differencing. Therefore, the results of Van Leer scheme will be presented only for the first- and 
third-order differencing. Figure 13 shows the Mach number distributions along the bottom and 
top walls. It is seen that the shock profiles are very sharp. The Mach number transition from the 
supersonic peak to the subsonic bottom takes only one grid width for both the present and the 
AUSM scheme. The Van Leer scheme needs two transition zones. All these three shock profiles 
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Figure 10. 1D shock tube results calculated by using AUSM scheme, grid size: 201, temperature and pressure 
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Figure 11. 1D shock tube results calculated by using AUSM scheme, grid size: 201, density and velocity 

Figure 12. 2D grid of the inletzdiffuser, 101 x 31 
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are monotone without oscillations, overshoots or undershoots. But as mentioned before, because 
the pressure splitting is not continuously differentiable at the sonic point for the present and the 
AUSM scheme, a glitch appears at the sonic point position as Figure 13 shows. In contrast, the 
Van Leer scheme obtains the smooth transition at the sonic point. Fortunately, this drawback 
can be removed automatically by using higher-order differencing as it will be seen later. Figure 14 
presents the pressure contours of the flow field. The present and the AUSM scheme gives the 
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sharper normal shock than the Van Leer scheme. The glitch at the sonic point was not revealed in 
the report of Liou and Steffen", who used the AUSM scheme with second-order differencing, 
except one case with first-order differencing, which was quasi-2D. The latter was not suitable to 
show the glitch. 

In the next step, to see the performance of the present scheme for higher-order differencing, 
calculations were carried out using second-order differencing. MUSCL-type flux differencing6 is 
used to evaluate the flux passing through the interface of a cell for the higher-order differencing. 
Again the explicit two-stage method was used for both the present and the AUSM scheme. 
Figure 15 shows the Mach number distributions using the fully upwind second-order scheme. It is 
seen that both the present and the AUSM scheme obtains the smooth transition at the sonic point 
and the glitch disappears. Furthermore, the shock profiles remain monotone without using any 
smooth limiters. The shock transition is almost in one zone at the top but it is two transition 
zones at the bottom. Figure 16 shows the pressure contours of the flow fields obtained by using 
the two schemes. It is seen that two pressure fields are almost indistinguishable and the shocks are 
sharp at the top and also at the bottom but with two zones. 

To see the results with still higher-order differencing, computations were carried out with 
third-order biased upwind schemes. These results are obtained from the 3D solver using the 
URS16*17 algorithm with the non-uniform grid in the 3D inlet-diffuser as shown in Figure 17. 
The computations were carried out in 3D, however the results are presented only for the central 
plane since the section is rectangular in spanwise direction and the results are nearly the same. In 

Van Leer Scheme 

AUSM Scheme 

The Present Scheme 

Figure 14. The pressure contours of the inlet-diffuser calculated by using the first-order differencing with grid 101 x 31 
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3 

Figure 17, the bottom of the diffuser is shown at the top so that the geometry can be seen better. 
The lower figure shows the typical section in streamwise direction. The Mach number distribu- 
tions along the top and bottom walls are presented in Figure 18. It can be observed that with all 
three schemes, oscillations appear in the vicinity of shock as expected.6 The oscillation amplitude 
of present scheme (Z/B) is the smallest among the three schemes and those of the AUSM and Van 
Leer are almost the same. The smaller oscillation amplitude of the present scheme may be due to 
the fact that the present scheme is a Mach number polynomial of degree one, the lowest degree. 
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The other two schemes are necessarily of degree two. The oscillations may be removed by using 
some smooth limiters to switch the scheme to lower differencing order at the shock location as 
many researchers have done in the past."." Such work is not done in the present paper. Once 
again, it can be seen in Figure 18 that a smooth transition at the sonic point is obtained by using 
third-order differencing and one transition zone shock profiles are obtained for all three schemes. 
In fact, the results of the present scheme completely agree with those from Van Leer and AUSM 
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I l l  I I I I 1 1 

The Present Scheme 

Figure 16. The pressure contours of the inlet-diffuser calculated by using the second order differencing with grid 101 x 31 

Figure 17. 3D grid of the inlet-diffuser with grid 101 x 31 x 31. To see the geometry, the bottom of the diffuser is shown at 
the top 
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except for the shock oscillations. The Mach number contours of the flow fields are presented in 
Figure 19. It is seen that all three look very similar with sharp shock waves. In comparison with 
Figures 14 and 16, some closed iso-Mach number lines appear at the top just before the shock 
waves, which are caused by the oscillations near the shock. It is also clear that the Van Leer 
scheme with third-order differencing produces sharper shock wave than the one with first-order 
differencing in Figure 14. 
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Figure 19. The Mach number contours of the inlet-diffuser calculated by using the third-order differencing with 
101 x 31 x 31 

1 E-02 - UB 
- - -  AUSM 

1 E-03 

1 1E-04 

P 

a: 1E-05 

s 
8 

1 E-06 

'Van Low 

1E-07 I I I I I 

0 500 1000 1500 2000 2500 
TIME STEP 

Figure 20. Convergence histories of the 3D inlet-diffuser by using the third order differencing 
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Figure 20 is the convergency histories for the 3D calculations of the inlet-diffuser. Single 
precision was used for the 3D calculations and the residuals were reduced to It is seen that 
the convergence rate of the Van Leer scheme is the best showing its advantage. Those of the 
present and AUSM schemes are almost the same, with time steps double that of the Van Leer 
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Figure 21. Convergence histories of the 2D inlet-diffuser by using the present scheme with grid 101 x31 

Figure 22. 3D grid of the transonic nozzle with grid 101 x 31 x 31. The grid shows the computational domain, which is the 
lower right side quarter of the nozzle 



140 G-C. ZHA AND E. BILGEN 

5 

Figure 23. Mach number distributions along the bottom wall centreline of the transonic nozzle with grid 101 x 31 x 31 
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Figure 24. The Mach number contours of the transonic nozzle calculated by using the third order differencing with grid 
101 x 31 x31 
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Figure 26. Convergence histories of the transonic nozzle with grid 101 x 31 x 31 

scheme. For this case, the present scheme is a little faster than AUSM scheme. To see the 
convergence history with third-order accuracy in a 2D case, calculations were also carried out by 
using the upwind-relaxation algorithm for the 2D grid shown in Figure 12. Double precision was 
used and the residual was reduced to machine zero as shown in Figure 21. It is seen that after 
10- accuracy, the residual decreases continuously, which shows that the present scheme 
converges without computational difficulties for this case. 

Case 3: Case 3 is a study on a rectangular converging-diverging nozzle shown in Figure 22. 
Due to symmetry, it is sufficient to study the one quarter of the nozzle shown in the figure. 
Although this nozzle is 3D, it behaves almost like a 2D case for the variation in the spanwise 
direction is small. However, it is again a case solved by using 3D Euler equations and the results 
can be compared to experimental ones, in particular pressure distributions at various planes.” It 
is noted that there is no shock for this case. The computations were carried out by using the URS 
algorithm with third-order differencing for all three schemes and the results are compared. The 
Mach number distributions along the centre-line of the nozzle are presented in Figure 23 and the 
Mach number contours on the central plane in Figure 24. Figure 23 shows again that the present 
scheme completely agrees with Van Leer and AUSM scheme and the sonic transition is smooth. 
Figure 24 shows that the Mach contours are very similar with no discernible differences. 
Figure 25 is the pressure distributions of the nozzle at different spanwise locations. First three 
figures on the top are on the bottom wall of the nozzle and the last at the centreline as indicated in 
Figure 25. The results generally agree favourably with the experiment.” The pressure distribu- 
tions at and near the central plane ( Z / L  =O.O and 0.45) agree with the experiment better than that 
at Z/L=0.875. It may be because the real flow near the central plane mainly behaves as 2D flow. 
When it is near the side wall (Z/L=0*875), the interactions of the side wall boundary layers cause 
a strong 3D effect, which cannot be captured by using the 3D Euler equations. The disagreement 
is mainly at the throat where the flow has the tendency to separate. Similar results are seen on the 
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last figure in Figure 25, which illustrates the pressure distribution along the side wall centre-line. 
Figure 26 shows the convergency histories of the transonic nozzle with the grid of 101 x 31 x 31. It 
is seen that for this case the present scheme is about 15% faster than AUSM and 70% slower than 
Van Leer scheme. 

CONCLUDING REMARKS 

A new flux vector splitting scheme has been suggested in this paper. This scheme uses the velocity 
component normal to the volume interface as the characteristic speed and yields the vanishing 
individual mass flux at the stagnation. The numerical dissipation for the mass and momentum 
equations vanishes with the mass flux. One of the diffusive term of the energy equation does not 
vanish at the stagnation. But the low numerical diffusion for viscous flows may be ensured by 
using higher-order differencing. Consequently, for the viscous flows, the present scheme may be 
more accurate than the flux vector splitting schemes without the mass flux vanishing at the 
stagnation. The scheme with the Mach number polynomial of degree one, the natural and lowest 
degree, is very simple and easy to be implemented. 

The scheme has been tested to solve 1D,2D and 3D Euler equations. The solutions are 
monotone and the normal shock wave profiles are crisp. For a 1D shock tube problem with the 
shock and the contact discontinuities, the present scheme and Roe scheme using the first-order 
differencing gave the most satisfactory results compared with those from Van Leer and 
Liou-Steffen’s AUSM schemes. For the multidimensional transonic flows, the sharp monotone 
normal shock wave profiles with mostly one transition zone are obtained. A glitch appears at the 
sonic point when the first-order differencing is used for the transonic inlet-diffuser. But the glitch 
can be automatically removed by using a higher-order differencing. The scheme converges well 
for the tested cases, slightly faster than AUSM scheme and slower than Van Leer scheme. 
Generally, for the tested transonic flows, the results agree completely with the AUSM scheme and 
Van Leer scheme. However, using a third-order differencing, the present scheme produces results 
with least oscillations near the shock. The results also agree favourably with the experiment for 
a transonic nozzle. 
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